
1 1

i
I

CLARIFYING
CLIENT ·SERVER
Client-server architecture has advantages, but
not necessarily distributed database support.

by David McGoveran and Colin J. White

Editor's note: Much of DBMS magazine's
treatment of client-server architecture f<>­
cuses on I.AN applications in which a
single database server running on an /ntel­
architecture machine supports DOS and/
or OS/2 clients, or a single database server
running on a Sparc-<Jrchitedure machine
supports UNIX clients.

A client-server architecture on l.ANs can
support transaction processingapplicatWns.
Such architecture is a less expensive alter­
native to minicomputer and mainframe
platforms, with the added bonus of provid­
ing data processing operators with the PC's
responsive user interface. Database server
software brings the power of the mainframe
DBMS down to the I.AN, offering security,
concurrency control, and transaction log­
ging that go far beyond what is available
from DBMSs with a PC heritage that.oper­
ate in a file server mode.

A client-server architecture on I.AN plat­
forms also supports a new style of end-user
computing. The performance and integrity
provided by database server software al­
lows a network of end users to share an
organization's data via their favorite ap­
plications. Some can run spreadsheets, such
as Microsoft &eel with its Q&E link, Wingz
with its link to /nformix, or Lotus J-2-3
with its Data/ens link. Others can run their
customary PC DBMSs via new database

Colin J . White is President of Data­
base Associates in Morgan Hill, Calif.,
and Editor/Publisher of lnfoDB and
Database Review. David McGoveran
is president of Alternative Technolo­
gies in Santa Cruz. Calif.

server links (available now for DataEase,
Paradox, and Advanced Revelation to name
a few, with dBASE JV and others soon to
follow). Still others can run new executive
information tools for ad hoc query and
data analysis such as Channel Comput­
ing's Forest and Trees. Beginning with the
December issue of DBMS, we will focus
on this deluge of client-server tools with a
new column called "On the Front End. "

DBMS magazine's vision of client-server
architecture as a better alternative to file
server architecture on I.AN platforms is
clear. Even so, we are aware that the world
is bigger than the extent of the I.AN, and
we are aware that the picture of client­
server in that la11Jer world is not so clear.
The term server is applied variously to
machines that provide file services, to ma­
chines that provide database services, and
(CQTrectly) to the logical process that pro­
vides database services. The vision becomes
even blurrier when mainframe and mini­
computer platforms replace LA.Ns as the
focus of the picture. What does client~erver
technology mean to the MIS shop more
used to thinking in terms of C4SE tools
and COBOL than in terms of Clear+ and
Paradox? What if the main, "mission­
critical" manipulation of the data is to
remain on . the larger platform and only
extracts or snapshots of the data are to be
made availabk to end-user workstations?

There's little question that client-server
techn.ology is an oppQTtunity for MIS to
provide cheaper yet higher-quality access to
data witlwut letting that data out from MIS's
protective control. QienJ-server architecture
can ojjload end-user computing, applica­
tion development, and, yes, even trans-

... ..._ "" _ ,.._. ... __ .

action processing from large machines
to the cheap MIPS offered by PCs and
workstations. Qient-server is MJS's
ace in the hole to stave off ever­
degrading response times and expen­
sive processor upgrades.

Unfortunately, the clarity of this
promise is often muddied by the in­
tenningling of distributed database
concepts into disCJtSSions of client­
server architecture as if they were one
and the same. They are not, although
some marketing hype might lead you
to such a conclusion. Client-server da­
tabases are here today, while the first
pieces of true distributed databases
are just falling into place.

To help clarify the picture, DBMS
Advisory Board member Colin White
and his colleague David McGoveran
herewith tackle the task of rigorousl,y
de/iningclient-serverarchitecture. The
concepts covered in this article can
be applied to any client-server product
on any hardware platform, but are
particularly appropriate for MIS shops
that want to understand the implica­
tions of distributed access to data stored
on minis and mainframes.

T he data that most large organization
applications access is stored in cen­

tral databases. The use of mini-and main­
frame computers for this centralized ap­
plication processing is becoming increas­
ingly more expensive, especially when
compared With the price/performance
ratio of microcomputer systems. For this
reason, ways of off.loading minicomputers
and mainframes to cheaper microcom­
puter or workstation solutions is of in­
creasing interest End-user computing,
applications development, and corporate
processing are all candidates for off­
loading and downsizing.

Even if these types of processing are
moved to a workstation, there is still a
need for users to access host data. A
client·server architecture is one way to
resolve the issue of how applications and
tools can get easy access to this data.

Terminology
Like many other data processing tech­
nologies, client-server is littered with con­
fusing terms, such as distributed pr<>­
cessing, distributed database, coopera­
tive processing, and peer-tcrpeer, to name
but a few. In order to understand and
distinguish among these, we'll first de­
fine a few of the key terms.

Server. A server is a logical process
that provides services to requesting pr<>
cesses. In general. it does not send re­
sults to the requester until the request­
ing process tells it to do so. It is up to the
server to manage synchronization of ser­
vices and communications once a request
has been initiated. The use of the term
server in this article should not be con-

Nn11Pmlwr JQQll nRM.~

.. -....

iis
iit­
ISe

11t-
11e
gh
OJI

la­
nt
ses

.fS
ite
an
sly
Ju
an
wet
11e
1/IS
::0-
re,d

on
!ll­

in­
ap­
as­
.en
ice
his
ers
m­
in-
lg,
ate
>ff-

ire
J a
A
to

nd

Ch­
on­
ro-
1"a­

me
111d
de-

!SS
ro­
re­
:st­
ihe
ier­
est
rm
on-

~s

fused with a piece of hardware, i.e. a
special-purpose processor dedicated to
running server software. There are many
kinds of servers, including network. file,
terminal, and database servers. A data­
base server is the logical process respon­
sible for processing database requests.
In this article, we will restrict the discus­
sion to database servers.

Client. Processes that request services
from a server are called the clients of the
server. As above, the term client should
not be confused with hardware, i.e. proc­
essors connected to hardware "servers."
One characteristic that distinguishes a
client from its server is that the client
may initiate a communications transac· .
tion (not necessarily a database transac­
tion) with the server, but the server never
initiates a communications transaction
with the client It is the task o(the client
to initiate communications, request spe­
cific services, acknowledge services com­
pletion notification, and accept results
from its server. While the client may
request either synchronous or asynchro­
nous notification of service completion,
it does not manage synchronization of
services and communications. In a client­
server architecture, many clients may
"share" a single server.

Client-server commwlicationS- Com­
munications between client and server
in a particular installation can involve a
variety of mechanisms: LAN, WAN, or
operating system task-t()-(aSk communi­
cations services via mailboxes, shared
memory, named pipes, and so on. How­
ever, a client-server architecture should
be independent of these methods and the
physical connection between them. A cli­
ent-server architecture supports trans­
parent reconfiguration or even replace­
ment of the client-server communications
interface so that applications and data­
base processing need not be altered. In
particular, note that the client and the
server need not be on physically distinct
processors or nodes. If the user decides
initially to locate a client on the same
physical machine as its server and use
shared memory for communications, then
later to locate them on geographicaJly
separated machines and use a satellite
for communications, the architecture
should support the change transparently.

Distributed Arcllitectures
The term client-server is frequently asso­
ciated with and often used almost inter­
changeably with "distributed." This is
due to the fact that a client-server archi­
tecture provides good support for distri­
bution. Indeed, the kinds of distribution

. a client-server architecture supports can
be used to classify client-server database
applications. For this reason, we now
take a look at the different kinds of dis­
tributed application, and define the types
of distributed capability required by each.

DBMS Nouember 1990

FIGURE 1
Processing vs. database

Distributed processing and distributed cbtabase are not synonomous. Distno­
uted processing that involved a database application involves doing the pre&en·
tation. business, and cbtabase logic p1"'0Ce8frinc on one computer and the dJata.
base processing on another. Distributed cbtabase, in contrast, involves taking
a database and spreading the data a cross a set ot computers.

We assume throughout that the reader
has a basic understanding of distributed
database technology and its advantages
[Editor's 'note: see Herb Edelstein's arti­
cle in the September 1990 issue of DBMS).

The main objective of a client-server
architecture is to allow client applications
to access server managed data The server
could be running on a remote computer -
for example, a mainframe across the coun­
try or a 486-based machine across the
IAN. For this reason, client-server appli­
cations are frequently associated with
the term distributed processing. A client
that is physically separated from the server
engages in distributed processing, but
distn"buted database processing is not
necessary for client-server computing,
nor is physical separation a requirement
for client-server processing.

As implied above. care must be taken
to differentiate disrributed processing sup­
port and its forms from distributed data­
base support and its variations. Distrib­
uted processing involves taking some
processing and spreading it across a set
of computing resources. In a database
application, distributed processing could
involve doing the presentation, business
and database logic processing on one
computer (typically an intelligent work­
station). and doing the database process­
ing on another. Distributed database, on

the other hand, involves ta.king a data­
base and spreading the data across a set
of computing resources (see Figure 1).

The splitting of the data in a distrib­
uted database application may be done
by storing different database tables on
different computers, or even by storing
different parts or fragments of an individ­
ual table on different computers. No mat­
ter how the division is done, it must be
transparent to the application, i.e., the
application (or the user, for that matter)
should not be aware that the data is
distributed if the database is to be truly
distributed.

In the following sections, we examine
the features that distinguish various types
of distributed database processing, meth­
ods of data distribution, and the require­
ments for distributed architectures in
more detail. The reader should be aware
that. although discussed in t.erms of client­
server architectures, these types of dis­
tributed data processing can be more
broadly applied.

Distributed Data Processing
The objective of the distributed sYStems
we are about to describe is to give appli­
cation users access to both locaJ and
remote data. There are several types of
request an application on a client can
send to a (remote) database server for

79

A client.server DBMS can offer four lev·
els of distributed database capability.
In order of increasing complexity and
functionality, they are remote request,
remote transaction, distributed trans·
action. and distributed request. Only
distributed request processing can be

........... -.............................. _...._.._ , ____ .. _, ... __ , _____ , ... -~ ---

processing (see Figure 2):
Remote request. A remote request

capability allows a single request (e.g. a
single SQL statement) to be sent to a
single server for processing, as shown
in Listing 1. .

Remote transaction. A remote trans­
action capability allows a transaction con­
sisting of multiple requests to be pro­
cessed at a single (perhaps remote) server,
as shown in Listing 2.

Distributed transaction. Distributed
transaction capability allows a transac­
tion consisting of multiple requests to

LISTING 1. Remote request
SELECT A. *

FROM
SBRVERl. DAT.lBl.SKl . TABLJ:l A,

WllERB
A.CO~ ,. B . COLtlMNl

LISTING 2. Remote transaction
BBGIH lfORlt

SELECT A.*
li'ROM

be processed by multiple servers Oocal
or remote). Each request can be pro­
cessed only by a single server, but differ­
ent requests within the same transaction
can be processed by different servers,
as shown in Listing 3.

Distributed request. A distributed
request capability allows a transaction
consisting of multiple requests to be pro­
cessed by a distributed database server
Oocal or remote). Each request can be
processed by multiple physical servers,
but this is transparent to the client Dis­
tributed request processing allows, for

SERVE1U . DATABASEl • TABI.1!2 B

SBRVERl.DATABAS&l. TABLBl A, SKRVBJU.DATABASB1.'0BLB2 B
WllERB • . •

A.CO~t · • "B.COUHll
ti~-:.: .. • • .. • . .,,

OPDATE SERVEIU.DAUBAS&l.TABLJ:l
SET COLOMlll = ·."~tlE"

Cc.MIIT lfOIUt ;.

LISTING 3. Distributed transaction
BEGIN lfORlt

SELECT i.. .'•
FROM

SERVBR1 .DADBAUl; TABLBl A,
1f8BRE ., , ,

A.COLOMNl ~: B.COLl»llfl

OPDAD. SBRVD2. DAD.Wal .'niri.ai
S&T COLOMNl • "lll:llVALUB"

LISTING 4. Distributed request
u BEGIN WOrut

(SELECT A.*,° B.*
ncM .

•I

SERVBIU.DADBlSBl.um.&l A,
'lnDCU · ...

, A. COUJMlll . = B. COLOCl!ll)
ONION .
(SBLBC'l"C·.*,· D. ·* ~•I

l':QCM ,•,, •. ,
": SBRVER2.DA'!ABAS&l . DBIJU C, WBBRB . '.. . . t·

~-:~~1 • o .'co~>
OPDUK SERVBR2 .DATABASE1.TABLB1

SE'? COL~=-. . ·~·,, ..

'·

• <

. . ,
SERVER.l. DATABASll . TABLB2 B .,.

. l'

.,
:m

. .

I {!

. "' ' I . :
considered to support the concept of a .. ·<.:... • ·~
distributed database. '--~--'~~~~~~~~~~~~~~~~~~~~~~~~__;_~.:.J

C0191IT MORK . '::" . ' ~ •) .

c

Let·
grm

Be
own:
As'\11
find•
Lool
R'a1

WJ
ful. ~
gran
And
to!M
One
exce

'.:'': : --­
; ·' New

•Wit

, ~
·.~ ~ ... :: tos

.. ~. < ma
:. ~- .. ·;i:

• '· Ille
-~-. •Ma
".lr~". ~ ID 1

>:.:~.:_. ·:
:~·~); _, .:;

• be1
'-~ ... -?.·.-¥ • ..,.

{:i.t~
, ;., .. Fie

::;'.';'.]
· 'Vt•t' ,• 'Jbl
?~)~ .· I

.;_:j~SL;.~:.

... -.............. --...................... _...__ __ _ __

example, tables from multiple locations Types of Data Distribution • Fragmentation: where a table is br<>- proc«
to be accessed using a relational join or Data in a distnbuted environment can ken into multiple pieces, and each piece on tl
union operation, as shown in Listing 4. be distributed in one of several ways: physically stored at a different location, confi,

Of the four types, only distributed re- usually in order to keep data located serv«

quest processing can be considered to • Manual extract where a user causes physically close to where it is used while cessi
support the concept of a distributed data- data to be copied from one location and allowing full access to all the data in the ever,

base. (Of course, other facilities are also loaded into one or more tables at another system from remote sites. Applications sligh
required to fully support distributed location. Remote request or remote trans- accessing the fragmented data perceive the c

DBMS, as shown in the box entitled "Dis- action processing could be used to per- it as a single table. Fragmentation can ent i

tributed DBMS Checklist") Distributed form a manual extract. be done vertically by subsetting the col- fun ct
request processing allows users to dis- • Snapshot: where the DBMS periodi- umns of a table, or horizontally by sub- Whe
tnbute data across multiple locations with- cally extracts data from one location and setting the rows of a table. on a

out the application having to know where loads it into one or more tables at another proo

the data is physically located. The other location. The user defines the frequency Types of Client•server Processing man•
three types of processing all impose re- (every day at midnight, for example) at Having defined the various types of dis- proc1

strictions on what can be done by the which snapshot processing is done. A tributed data access and data distribu- cessi
application, and often require the applica- snapshot is usually created for read-only tion, we can now look at how these could M
tion to know the physical location of the processing. be used by different kinds of client~server ure

data. These other three types do, how- • Replication: where the DBMS main- based distributed applications, and re- appli

ever, permit access to remote data, and tains multiple copies of the same table view the distributed database architec- by a

do allow users to perfonn application at multiple locations. The location of the tural features required by each. There data

processing (client processing) at a differ- replicated data should be transparent to are many different types of distributed syst«

ent location from th.e database process- the applications accessing it The pr<>- application. To demonstrate some typical by J

ing (server processing), i.e., they all sup- cess of keeping each of the copies up to examples, we will use the six scenarios serv

port a form of client-server processing. date can be performed either asynchr<>- shown in Figure 3. TI
As you shall see, there are several differ- nously or synchronously with the pr<>- Stand-alone client-server. The kind can
ent options for use in developing distrib- cessing of applications that modify the of client-server application illustrated in cess

uted applications. replicated data. Figure 3.1 is one in which the client serv

>ro-
ece
00,
ited
hlle
the
ons
~e
can
col- -
rub- ..

' dis-
ibu-
mid
ver
re-

t.ec-
tere
1ted
1ical
rios

cind
din
ient

IMS

process and the server process reside
on the same physical platform_ In this
configuration, the server can still con­
serve resources by providing shared pro­
cessing to multiple applications. How­
ever, it usually does so at the cost of
slightly degraded performance due to
the cost of communications between cli­
ent and server process. In effect, the
functionality is that of a local DBMS.
When multiple clients or servers are run
on a single hardware platform, multiple
processors may be used to improve perfor­
mance. Nonetheless, neither distributed
processing nor distributed database pro­
cessing are supported in this case.

Manual extract client-server. Fig­
ure 3.3 shows a style of client-server
application in which processing is done
by accessing subsets of the corporate
data that have been moved to the client
system. These subsets will be created
by regular manual extracts from the
server.

This style of client-server application
can be employed by an end user to ac­
cess corporate data from a single remote
server and is normally restricted to read-

DBMS November 1990

.. _ .. ___ ..._ ____ ~ ~ -

only access. The extract is necessary
because corporate data is frequently not
in an appropriate format The end user
may, for example, want to see summary
information or consolidated data, rather
than detailed data; that consolidated data
would then be processed locally. The
data may be inconsistent while it is being
accessed by the end user if corporate
applications are maintaining the data on
the server at the same time. Dynamic
access to data can be done under this
architecture using remote request pro­
cessing or remote transaction processing.
The amount of dynamic access typically
is kept to a low level, however, because
of the potential performance impact on
the remote system.

Stand-alone IAN client-server. This
is the typical client-server con.figuration
on a stand-alone I.AN. Multiple client
processes - usually one perworkstation
or PC - are called on to handle the presen­
tation, business, and database logic while
the server handles database access. There
is a slight disadvantage to this kind of
approach as opposed to that of the stand­
alone case shown in Figure 3.1: Commu-

nication between client and server is via
a LAN link, which is much slower than
the shared memory link used in a stand­
alone host-based client-server application.
This disadvantage may be offset by the
additional processing power of one work­
station per client process.

Single-sit.e update client-server. This
style of client-server application ups the
ante to access of multiple remote Joca..
tions using distnbuted transaction pro­
cessing. The data accessed at any one
location is usually still independent of the
data stored at another. Because the re­
mote server locations are not connected
by a network link, neither location can
act as a coordinator in a two-phase com­
mit protocol. For this reason, this style
of processing only allows a client transac·
tion to update data at one remote loca­
tion. (Note: if the product provided sup­
port for the client to act as the coordina­
tor, multi-location updating is then possi­
ble.) Even though a transaction can up­
date data only at a single location, it is
still possible for deadlocks to -OCCUr, so
distributed concurrency controls are re­
quired for single-site update client-serve·r

83

::· .. • ... :"!.··.· X ···

i

:1

.1
11
'I
:1 .,
'I
ti

" ,1
I
I
!

applications. Data distribution would nor­
mally be handled by manual extracts of
data from remote servers.

Multisite update client-server. A
multisite update client-server application
adds support for a two-phase commit
protocol between locations and, there­
fore, allows client transactions to update
data stored at multiple remote locations.
These extensions permit data stored at
one remote location to be related to data

stored at another location, thus provid- ·
ing the first elements of a distributed
database capability. With this type of ca­
pability in place, data distribution by man­
ual extracts will be replaced by DBMS
snapshots.

scientific applications that need to access
and maintain distributed data.

Distributed database client-server.
Finally, we come to a true distributed
database application using distributed re­
quest processing. Here, the DBMS pro­
vides both data fragmentation and repli­
cation, allowing faster access for read
processing. You should be aware that
there are performance implications for
significant data modification operations.

Of course, this type of distributed client­
server application can provide end-user
access to remote corporate data just as
the previous examples did. This architec­
ture is also suited for engineering and

Client-server Applications Development

T he three main phases of application development to
consider when reviewing the use of workstations for
downsizing application development are analysis and

design, coding, and testing.

Analysis and Design
If this phase of the application life cycle is independent of the
underlying DBMS, it poses no special development problems
from a DBMS perspective. On the other hand, upper CASE
tools usually maintain analysis and design metadata such as
entity /relationships or object-oriented definitions, data flow
diagrams, and structure charts in a CASE data dictionary.
Some upper CASE tools are appearing that use either a
relational DBMS for storing and manipulating the CASE data
dictionary or for which a bridge can be used to move metadata
between the DBMS and the CASE tool data dictionary. Dic­
tionary compatibility with the DBMS catalog will become
increasingly important as this technology develops.

Workstation based upper CASE tools for doing application
analysis and design have existed for several years. In the
client-server environment, the server may also be the location
of a global repository that may then be remote from the
workstation. If a bridge is used to move metadata to or from
such a remote repository, issues such as reintegration, ver­
sioning, and name resolution become important w date, no
repository exists with a satisfactory mechanism for achieving
these tasks ..

Coding .
Support for coding of client-server applications varies from
product to product This is particularly true of embedded SQL
support Support for multiple servers from within a single
compilation unit is not a standard feature and, if supported,
varies in implementation. For example, it may be possible to
issue a CONNECT statement (to a particular server) as a SQL
extension. Another mechanism is to declare a SQL cursor for
a specific server.

During the coding phase of application development, edit­
ing can be performed on the workstation. If the host language
is supported on the workstation, modules and perhaps the
entire application can be compiled as well. SQL statements
can be prototyped on a local DBMS provided its SQL dialect
is similar to the host DBMS that will be used for production
operation. As long as the DBMS supports full location trans­
parency for applications programs, the application can later
be redirected to the host server without recompilation.

In addition, stored procedures and triggers are features
likely to be supported by DBMSs with a client-server architec­
ture, as these reduce network traffic. If stored procedures are
supported by the DBMS server, coding can be substantially
simplified. This benefit is not dependent on the whether the

84

DBMS is local or remote. Similarly, features such as support
for referential and other forms of integrity enforcement within
the DBMS can reduce network traffic and application coding.
All of these features may improve portability by reducing
applications code, but unfortunately DBMS vendors typically
use different syntax and/ or semantics when supporting these
nonstandard capabilities.

Finally, application development tools (application genera­
tors, source code and configuration management utilities,
symbolic debuggers, and so on) that can use a client-server
architecture enable application prototyping and development
to be done using the DBMS on the server platform. In this
cal:.e, a separate database is usually set up on the server
platform for ac.cess during prototyping to avoid both possible
loss of data integrity and concurrency conflicts in the produc-
tion database. . · · ·

. Testing _ . _ _ .
Testing a client-server application on a workstation is much
easier than testing a host-based application on a workstation.
The latter requires that a development tool be capable of
simulating the final production environment While simulat­
ing the final production environment can be straightforward
if the workstation runs the same operating system (for in­
stance, a VAX/VMS or UNIX System V) as the host, it can
become quite complicated if there are significant differences
(as there are between MS.DOS and IBM's CICS, for exam­
ple). The differences might require emulation of transaction
monitors, data communications monitors, operating systems
services, compiler, file system, and DBMS.

If, however, the corporate application will run on the work­
station as a client-server application, the only component that
might ultimately have to be tested on the host is the SQL
processing. While SQL can be tested against a local DBMS,
if the workstation is a single-user environment, some means
of emulating network communications, transaction manage­
ment, and concurrency for test purposes is required. Other­
wise these portions of the application functionality must be
tested on a host DBMS using client-server processing.

Some client-server DBMS products provide tools for test­
ing against a model database on the local server and then
subsequently and transparently connecting to the production
database and server without recompiling or relinking the
application. This is a powerful test vehicle for applications,
limited only by the capabilities of the workstation (single vs.
multiuser programs, small databases, memory limitations,
and so forth) . It allows developers to isolate problems with
communications and the network from those involving appli­
cation functionality, reliability, or correctness. It also provides
strong isolation between the development and production
environments. •

November 1990 DBMS

s

.
d

;.

\
\

s

Only something like IBM's recently an­
nounced high--speed fiber links between
remote servers -which allow mainframe
channel speeds to be maintained over a
distance measured in miles instead of
feet - would eliminate concern about this
communication bottleneck. Distributed
database architecture requirements for
this type of application are extended to
include location transparency, global op­
timization, dislributed integrity control, ·
and distributed administration.

Client·server Communications
There are two ways a client application
can connect to a remote server, either
directly or indirectly (see rtgUre 4). A
direct connection allows the application
to connect directly to the remote server.
An indirect connection provides the ap­
plication with access to the remote server
only through connection to a local DBMS.
These methods are not mutually exclu­
sive: It is possible that, within an inter­
connectedclie.nt-serversystem, both meth­
ods may be used. It is quite likely that
the local DBMS accessed by end users
will itself implement client-server archi·
lecture on a IAN.

With the direct connect approach, the
application connects to the remote server
through a communications interface. The
communications interface is sometimes
referred to as a gateway. (Note: Titis

DBMS November 1990

............. ,.. , -... .

term has its origins in network terminol­
ogy and is distinct from database gate­
ways found in the DBMS world.) H the
communications interface allows connec­
tions to multiple servers, the application
could use distn'buted transaction process­
ing, but this can lead to integrity prob­
lems if the application updates data on
more than one server. A two-phase com­
mit protocol is required to avoid such
integrity problems. Today, remote trans­
action processing is far more common

. than dislributed transaction processing
during access to remote data (and dis­
lributed request is rare indeed).

With the indirect approach, a local
DBMS handles connections to a remote
server through a communications inter­
face on behalf of the client application.
With this approach, the client application
can access both local data and remote
data by making requests to the local
DBMS. This might be the approach taken
by a configuration in which Oracle Server
runs on a local 486-based machine on the
IAN that is linked to Oracle running on
a larger machine, for example. To handle
this kind of approach, dislributed trans­
action or dislributed request processing
is required.

A simple communications interface is
insufficient for either the direct connect
method or the indirect connect method
if different products are used. In this

case, the client and server or local DBMS
and remote DBMS may use different
SQL dialects (syntaJQ and possibly have
different semantic behavior as well Re­
gardless, a piece of software called a
database gateway must be developed that
attempts to translate all the SQL syntax
and semantic differences. Achieving one
hundred percent compatibility is an ~
most impossible task. This imposes the
need for sophistication on the part of the
user to be aware of and overcome un­
solved problems. Unfortunately, the de­
tails of this topic are beyond the scope
of this article.

Client·Server Ead·User Computlag
A client-server architecture provides the
opportunity to off-load mainframe pro­
cessing to a workstation. In .a client­
server environment, the application pro­
cessing may be done on a worikstation,
and a mainframe may be reduced to the
role of a database server. Indeed, the
mainframe's load may be reduced even
further if a IAN-based database server
takes on an intermediary role. This will
become clearet as we discuss the appli­
cation of client-server architecture to end­
user computing.

. One of the factors pushing strongly
towards client-server computing and down­
sizing is the demand for access to data
created when a company first installs a

Is this what its
like~complex

data on your
relational database?

CIRCLE READER SERVICE NUMBER 98

85

~I
ti
,I
;j
;·

g
a:
w
0

~
t­
w
a:
~
~
::t
>­m

~
:;;

FIGURE 4
Client-server connections

::::> .
;1 \

There are two ways a client can communicate to the server: direct and indirect
connections. With the indirect approach, the clien t application can access both
local data and remote data by making requests to the local DBMS.

new relational DBMS. Many companies
underestimate the growth of end-user conr
puting by a factor of two or three when
they first install a new relational DBMS.
As end users find that they can at last get
access to their data, they make more and
more use of computing resources. If only
mainframe processing power is used, the
load created by explosive growth in end­
user processing can pose a significant
machine capacity problem. Using client­
server architecture to offload application
processing to work stations saves host
computer power and provides a means
for cheap, incremental growth. Just as
important, it also has the advantage that
workstations typically have better tools
than their mainframe counterparts. End­
users familiar with the GUis (graphical
user interfaces) which these tools offer
are unwilling to settle for less sophisti­
cated tools. As one industry specialist
has noted, "We are creating a generation
of GUI junkies." This situation drives a
trend towards the development of work·
station-based tools employingwindowing
technology, further encouraging the move
towards client-server architectures.

86

If the workstations involved are con­
nected to a lAN-based server to which
host corporate data can be extracted and
downloaded on a regular basis - say,
every day at midnight- the processing
load on the host is further reduced.

Another problem can be addressed with
this intermediary lAN approach. Today
most end-user computing on worksta­
tions is done in single.user mode. When
the end user wants to access corporate
data on a host computer, a micro­
mainframe link is used to . extract the
required data from the central database
into a file. This file is then downloaded
to the workstation over the link. Such
copying of data leads to data proliferation
and a total lack of control over the ex­
tracted data. If the data is instead ex­
tracted and downloaded to a IAN-based
client-server system every night, a local
database server can manage shared ac­
cess to the data. The data shared by end
users will remain consistent and never
more than one day old.

This still leaves the situation where
an end user on a workstation needs to
get up-to-the-moment information from

·a host database. In this case, the client-.
server approach is ideal since it provides
dynamic access to the host data. Even
so, this access needs to ~ controlled to
prevent performance degradation of the
host applications, and also to ensure that
the data being accessed is in a consistent
state. The direction of the industry for
supporting dynamic access to host data
by end users is to provide a client-server
connection to a host DBMS from work­
station end-user tools such as spread­
sheets (e.g. Microsoft Excel and Lotus
1-2-3) and query packages.

Operational Processing
The ability to off-load corporate process­
ing to workstations is a primary goal of
client-server architectures. The applica­
tion specific code and database process­
ing can be run on a workstation using
client-server processing against a local
DBMS. Alternatively, the application­
specific code could be run on a worksta­
tion and the database processing could
be run either on a lAN-based database
server or against a remote host-based
database server. The only difference be­
tween these alient-server configurations
is the server platform.

However, the choice of server plat­
form can have an impact on systems
management The choice will depend on
capacity and performance requirements,
and on the functions (for example, sys­
tems management toolS; continuous op­
eration, and high availability features)
provided by the DBMS server. The ad­
vantage of the client-server architecture
is that changing the platform on which
the server'is located should be transpar­
ent to applications and need not even be
determined initially.

Configurations
For purely operational reasons, it may
be necessary to configure a client-server
architecture to support multiple-server
connections from within a single applica­
tion. Even if it were possible and desir­
able to integrate preexisting systems Iran~
parently into a single distn"buted DBMS,
degrees of location transparency vary from
product to product and is less than per­
fect today. Because of this. there must
be a means to configure connection to
multiple 5ervers and multiple databases

. per server. Control of both network and
database access must be provided. The
degree to which these facilities are pro­
vided and transparency supported affect
the amount of (typically) complex code
that must be written by the developer to
compensate for the deficiency.

Environments without fully distributed
functionality present a number of ptob­
lems. For example, multiple-server sup­
port does not imply that distributed query
processingis$upported.AparticularSQL
cursor is usually restricted to processing

November 1990 DBMS

ent­
des
ven
Ho
the
that
tent
for

iata
·ver
1>rk­
~d­
>tus

ess­
tl of
lica­
ess­
>ing
ocal
ion­
:sta­
mid
1ase
lsed
,be­
ions

)lat­
~ms

ion
nts,
sys­
op-

res)
ad­

ture
lich
par-
1 be

may
·ver
~ver

lica-
~sir-
ans-
MS,
rom
per-
mst
11 to
1ses
and
The
pro-
'feet
:ode
~r to

1ted
rob-
sup-
1ery
;QL
>ing

MS

...... ~-.--. ... ·~···~ , .

statements that address a single server
and any databases that are accessible to
it By contrast, if the vendor assumes
that servers are physical entities, a net­
work node address may be used to con­
trol a server connection. For this reason,
multiple-server support also does not im­
ply that multiple database servers on a
single platform can be accessed from
within an application.

It may be desirable for some applica­
tions to span servers for reasons of se­
curity and/ or isolation, but for other ap­
plications to be confined to accessing a
particular server's databases. Sometimes
server or just network node access is
controlled by a start-up parameter. The
value of this parameter might not be
dynamically alterable during the run of
the application. Such a mechanism may
or may not allow access to multiple serv­
ers at a given node. On the other hand,
there may be no control at all over the
server to which a particular request is
sent, the decision logic for this being
transparent to the application developer
and an all-or-nothing decision for the sys­
tem manager. In this situation any author­
ized application can access any server
or database defined as part of the distrib­
uted system and no others.

Multiple client connections to a single­
server support require that transaction
management and locking within the data-

base engine be handled properly. It also
requires that each connection between
client and server be identified uniquely
and that appropriate mechanisms be pro­
vided for applications programs to inter­
act concurrently. Some DBMSs support
remote services such as remote proce­
dure calls from one server to another.
This allows more than one remote data­
base to be accessed from within the bounda­
ries of a transaction, but it does not mean
that the remote service will be commit­
ted with that transaction. Thus, distrib­
uted transactions may or may not be
supported.

Strengths and Weaknesses
As with most other technologies, there
are advantages and disadvantages in us­
ing a client-server architecture. The key
advantages are:

• The savings in host processing power
• Independent scalability of client and
server platforms
• Code modularity via shared services
(a server provides access to code that
can be shared by multiple applications)
• The ability to use workstation end-user
and development tools.

With the move towards increasingly more
sophisticated and user-friendly worksta­
tion tools, the last of the four will become

BAT

First impressions last.
INST ALL 3.0 gives your software

product a professional introduction.
Installations that rely on batch files INSTALL 3.0 detects monttors,
look amateurish and have limited DOS versions, coprocessors, etc.
error handling. INSTALL 3.0 to create machine-specific installa-
creates an elegant ~-------~ lions without asking
installation proce- ·Features very sophisti- questions.

the donlinant reason for using a client­
server architecture.

Improperly used, the client-server ar­
chitecture can cause some difficulties.
These potential weaknesses are:

• The impact of distribution on perfor­
mance
• More-complex information systems man­
agement

We discuss these potential drawbacks
in more detail below.

Performance Considerations
The key to good client-server performance
is to improve the efficiency of the trans­
nlission of database requests and result
data across the network. Client applica­
tions communicate with a remote data­
base server using a database language
such as SQL A database server, after
processing an SQL client request, sends
back to the client only the data that satis­
fies the request This is much more effi­
cient than a file server architecture, where
the complete file is sent from the server
to the client

The set-level processing aspect of SQL
also aids performance. A client applica­
tion can, with a single SQL statement,
retrieve or modify a set of database server
records, rather than having to issue sepa­
rate sequential requests for each desired

dure that will in- cated error-handling INSTALL 3.0 has
crease use~s confi- ·Does high performance been used for over
dence in your data compression four years by some
software product. ·Can safely and reliably of the biggest (and
INSTALL 3.0 modify system files smallest!) names in
comes with many • Allows selective instal- the industry, in the
samples you can lation of parts of your U.S. and abroad, to

Does this
remind you ofwhatifs

like building an
application to manage

complex data?

modify and use im- program install millions of
mediately; no pro- copies of pro-
gramming usually •Complete source code grams. Make sure
needed. All availa- included your software prod-
ble RAM is used •No royalty charges uct makes a good
for fast file trans- • Free technical support first impression with
fers. INSTALL3.0.

KNOWLEDGE DYNAMICS CORP. $~~~ks~~~~
Highway Contract 4. Box 185-H
Canyon Lake. TX 78133·3508
MasterCard/VISA/COD/POs welcome

Sales 800-331-2783
lnfemat'l 512-964-3994

24 hr FAX 512-964-3958
24 hr BBS 512-964-3929

CIRCLE READER SERVICE NUMBER 250

DBMS November 1990

CIRCLE READER SERVICE NUMBER 107

87

J BPS

r file

Intel

dset,

fems.

3Ving

meet

com­

piled

!Sthe

1hics,

1ving

d, of

from

DAY

record of each of the base tables, as in
older database systems. Client-server SQL
statements work most efficiently when
doing data modification, because data
results need not be sent over the net­
work. However, because SQL can create
a results table that combines, filters, and
transforms data from base tables, consider­
able savings in network data communica­
tion are effected even for data retrieval.
Only the rows and columns of data needed
by the application need to be sent over
the network.

On the other hand, network costs can­
not be ignored when doing distributed
or remote processing of any kind. Even

. though a relational DBMS reduces the
amount of requests and data that must
be sent over the network, the speed of
the network plays a major role in the
transaction response times seen by the
workstation user. Network protocol soft­
ware must handle the information at either
end of the communications link and use
of a network operating system is not
unusual. Network operating systems use

Distributed DBMS Checklist

both host and client computer process­
ing power.

In the case of a host-based client­
server implementation, the processing
power required by the network operating
system (for example, VfAM in an IBM
mainframe environment) may or may not
be offset by the processing power saved
by off-loading the application processing
to a client workstation. If network pro­
cessing costs on the workstation are too
great, performance is degraded for the
application processing. On the other hand,

A true distributed database system requires the follow­
ing architectural features:

feature is required for distributed transaction and distributed
request data modification operations.

Location transparency: The physical location of a
table when doing application processing is handled by the
distributed DBMS. Neither users nor applications need have
information about the physical location of a table. This feature
is particularly important when doing distributed request.pro­
cessing, and when accessing fragmented or replicated tables.

Distributed concurrency control: The system uses a
global concurrency mechanism to control multiuser access
to data at multiple locations. This facility is required when
doing distributed transaction or distnouted request data modi­
fication processing.

Global opt:imU.ation: The relational DBMS optimizer takes
into account the cost of accessing remote data when deter­
mining data access paths. This feature is important for good
performance when doing distributed request processing.

Distributed integrity control: The system ensures that
the distributed database integrity rules (referential constraints,
for example) are enfo.rced. · ·

Distributed commit The system uses a two-phase com­
mit protocol when updating data at multiple locations. This

Distributed administration: Facilities are provided to
define, create and maintain tables in a distributed environ- , ·
ment The DBMS should also have tools to monitor and tune
the distributed database system. . · •

Nowthere's ONTOS.All the
speed of files with the pt:<>cluctivity

of a relational database.
Who says that you can't have your cake and eat it, too? Certamlynot Ontologic. Not when

they have ONTOS. ONTOS from Ontologic is an object database.And it combines the function­
ality of relational databases with the speed of files to give you unprecedented productivity.

Sonow licationsdevelo rs ,----------------~---------gi
app . pe I 0 Please hilve a salesperson call. 0 Send me more injormati.on on ONrOS. ~I

can have the supenor pe1fonnance I Mail coupon to Ontologic, Inc Three Burlington ~ Burlington, tvt4 01 am. ~I
of files with thebenefitsofrelational I Name ' n :gl
databases like built-in multi-user shar-1 Company Pilon I
ing, integrity, SOl., transactions and 1 Add 1

concurrencycontrol I czy. I
ONTOS.Provenatsitesworld- 1 zip 1

wide. For more infonnation call 1

1

current o/S. I

Current Harriw'are 617-272-7110 or return the coupon. L _____ -_-_-_-_-_

The Experienced Object Database Company.

CIRCLE READER SERVICE NUMBER 122

DBMS Nouember 1990 89

presentation logic for advanced graphi­
cal user interfaces (GUls) can easily con­
sume mainframe resources if worksta­
tions are not used.

Clearly, network processing costs are
significant in determining the performance
of client-server applications. In evaluat­
ing the potential network load, the num­
ber of transactions per second and the
volume of returned data must be taken
into account

With some DBMSs, the number of
SQL statements being sent across the
necwork by client applications can . be
reduced by storing a named group of
related SQL statements and associated
program logic in the database server as
a stored procedure or stored program.
The stored procedure can then be exe­
cuted by a single request from the client
This approach also has the advantage
that the stored procedures can be shared
by multiple client applications. The prob­
lem with this technique is that there is
no agreed standard for defining or invok­
ing stored procedures (the ANSI SQL
committee is considering such a stan­
dard). Furthermore, not all DBMSs sup­
port stored procedures. For example, D 82
and Oracle do not support them at the
present time while Sybase and Ingres do.

Numbthough SQL and stored proce­
dures help reduce network traffic com­
pared to that with non-relational access
(which retrieves entire records from each
file or table), the rows of a results table
still have to be sent over the network
from the client to the server. Most rela­
tional applications use a cursor to fetch
data, one row at a time. across the net­
work. This involves considerable com­
munications overhead. It can be reduced
if the results are sent in blocks across
the network. The result data can then
be stored in a buffer on the client work­
station and processed using a SQL cur­
sor without further network interaction.
A problem arises, however, if the client
application wants to update the retrieved
data. II the database server has not locked
the set of result rows, an integrity eJQ»­
sure exists because other applications
could have updated the data since it was
retrieved. Possible techniques for solv­
ing this problem are:

• to use blocking and lock the complete
query result on the server until the client
issues a commit,
• to use blocking and lock each row on
both the client and the server as it is
fetched by the client application,
• not to use blocking, and instead to
send the data across the network to the
client, one row at a time, locking each
row as it is fetched by the client applica­
tion, or
• to use an optimistic concurrency con·
trol mechanism that checks for update
collisions at commit time.

... ---- -............................. - _ ... _____ ..,_ ... __ ____ _
hdormation Systems Mona9emeat
In a centralized development and opera­
tional environment, all our programs, data,
and data definitions are stored in one
place. When we distribute application de­
velopment, application processing, or data,
the simplicity afforded by such central­
ized storage and control is lost For ex­
ample, new problems include:

• Management of multiple program li­
braries
• Management of multiple data defini­
tions
• Database monitoring and performance
tuning
• Backup and recovery of a distn1mted
database
• Network management

These problems have an impact on the
personnel and operations as well. Suffice
it to say that this area must be considered
when implementing client-server appli­
cations.

Conclusions
In this article we have briefly 01ttlined the
features of a distributed database system
and have discussed several different types
of distributed applications. We have also
shown that you do not necessarily re­
quire full distributed database support
to build distributed applications.

Client-server implementations that fall
short of full distnbuted database support
are nonetheless very viable. For ex.am­
ple, client-server architectures involving
manual extraction or snapshots, or that
limit updates to a single SQL statement
or to a single site, clearly impose restric­
tions on what the application can do. If
location transparency or server scalabil­
ity isn't provided, the application has less
ability to withstand change. Nonetheless,

. these variations of client-server architec­
ture can provide substantial benefits to
organizations until some of the more ad­
vanced technology that a fully distnb­
uted database demands is in place.

Acknowledgments and References
Much of .the material contained in this
article was taken from articles published
in JnfoDB magazine (references 2 and
3), which discuss specific issues in more
detail. They are part of an on-going series
of detailed discussions on distributed ar­
chitectures, information architectures,gat.e­
ways, and so forth.

1. CJ . Date. What is a Distributed Data­
base System? lnfoDB, Volume 2, Num­
bers 2 and 3, 1987.
2. CJ . White. Using Distributed Data-.
base: Application Types, bifoDB, Volume.
4, Number 1, 1989.
3. CJ. \Vhite. Client-server Computing
in a DB2 Environment, /nfoDB, Volume
5, Number 1, ·1990. •

HOOK THE

PERFECT INTERFACE!

GrumpMenu is the lost word in
menus tor Clipper. If vou con create a
text outline tile. you oon create a
gorgeous. easy-to.use front end menu
with GrumpMenu - lr s that easy. ·
Store your menu structure In a text out­
line file. and Grumptish Menu instantly
generates optimized. reody-te>
compile C lipper source code (~
patible with Summer '8 7 and Oipper
50)!

GrumpMenu supports six different
menu styles. Including pull-down
casood ing. 1·2-3. and boxed 1-2-3.
You or ycxJt users con change menu
style and con -on the ny· from within
your application without recompiling
or relinking! You can set up config.
urotion files so that each user hos their
CYWn interface. GrumpMenu's profo.
type switch will save you hoLrS in de­
veloping quick prototypes to show
clients and use~

·Nol only has CrumpMenu given our at>
pltcalions an elegant colorful interface, it has
cul our programming time by 20'1li. We love
i~ and our users love ii!

- Nlcholas Ivon

GrumpMenu sells for just $199 US Codd
$7.50 US. $20 lntomationol J/h). You can't
go wrong with the Grumpttsh 30.day
money-back guarantee. 30 days tree
phone support and one year free BBS
support (a $50 value). Improve your
profile- plckupthephoneandhook
yourself the perfect Interlace today!

1 ..

~" '

